


Our aim is notably to apply this full resolution method on
human sequences, to be able to compare these population
size profiles to previously published results. Hence, we have
to find a way to obtain the gene-genealogies from sequence
data. One way could be to use ARGWeaver (Rasmussen et al.
2014), as is done in Palacios et al. (2015). However, Palacios
et al. (2015) found a systematic bias in their reconstruction
of effective population size over time profiles when using
ARGWeaver to infer gene-genealogies, even for rather simple
demographic scenarios. Here, we develop a simple 2-step
algorithm based on UPGMA and properties of the coalescent to
infer gene-genealogies from sequences, as it seemed to perform
well on simulated non-recombining sequences. A detailed
outline of the algorithm is described in the Methods section.
Inferring gene-genealogies from sequences is a challenging
problem, especially for recombining sequences, and we note
that our algorithm is merely a heuristic solution to the problem
that performs well.

We evaluate our ability to reconstruct the population size over
time using Popsicle together with our algorithm to infer gene-
genealogies. In particular, we study the impact of the mutation
rate on the reconstruction, to get a sense on how large the mu-
tation rate needs to be to obtain reasonable results. We present
the results for samples of size 20, simulated with values of Lµ
taken from {10−4, 5× 10−4, 10−3, 5× 10−3, 10−2}, for 1,000,000
non recombining loci and under scenarios 1 and 4 (Fig. 6 and
S7 Fig). For reference, with a mutation rate of 1.25× 10−8 per
base pair per generation, the range of Lµ values corresponds to
loci of 8, 40, 80, 400 and 800 kb respectively. With a mutation
rate Lµ of 5× 10−4, we can already uncover a good estimate of
the population size profile. Unsurprisingly, the more mutations
there are, the better the estimates of times to coalescence and
the more accurate the reconstruction. This fact is particularly
important for recent times where enough mutations are required
to accumulate to infer the very recent population sizes (Fig. S6).

Application to human sequence data

We apply the developed heuristic algorithm of gene-genealogies
inference followed by Popsicle to empirical sequence data. The
effect of recombination can be mitigated by considering only
regions of the genome with low or no recombination, provided
that we have access to a good genetic map. Following this
principle, we applied Popsicle to human genome sequence
data from the 1000 Genomes Project (Complete Genomics high
coverage samples from the (Complete Genomics data from
1000 Genomes public repository 2013)), for Yoruba individuals
from Nigeria, for American individuals of European ancestry
from Utah, U.S.A, for Han Chinese individuals from southern
China and for Peruvian individuals. We extracted regions
of no recombination according to the Decode recombination
map (Kong et al. 2002) (see Methods section for a description of
the data preparation). For comparison, we also use PSMC (Li
and Durbin 2011) and MSMC (Schiffels and Durbin 2013) to
infer N(t) profiles from the data. We inferred N(t) profiles for
the 4 populations in two ways: a) using single individuals (as
PSMC does) and averaging across single individuals (denoted
’Popsicle 1’), and b) using 5 individuals from the population
(denoted ’Popsicle 5’). From simulations, we have observed
that more than 10 haploid sequences only results in a minor
improvement of the inference in population size (see fig. 3).
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Figure 6 Effect of estimating gene-genealogies from poly-
morphism data. Reconstruction of N(t) from distributions of
coalescent times computed from gene-genealogies inferred
from polymorphism data. We used a sample size of 20 and
1,000,000 independent loci, evolving under scenario 1. The
mutation rate per locus Lµ is indicated by the color of the line
and the legend gives the mutation rates.

Overall, the Popsicle profiles of effective population size in
the last million years for every population largely resemble the
vague knowledge about past human population sizes as well
as the N(t) profiles inferred by e.g. PSMC (Fig. 7A). In contrast,
the profile reconstructed by MSMC is very different than PSMC
and Popsicle. As MSMC only traces the first coalescent even
between any pair of the ten chromosomes in the data, it provides
estimates of the population size only for the last 50,000 years
or so. A comparison on log-scale between the three methods
applied to CEU data is provided in Fig. S7. Results of MSMC
and PSMC across populations are given in Fig. S8 and Fig. S9
respectively.

Popsicle reveals a steady but slow increase in effective
population size starting around 1 million years ago, reaching
a maximum between 200,000 and 500,000 years ago, followed
by a sharper decline and a recovery during the last 100,000
years for European and East Asian populations. However,
prior to a million years ago, the population size inferred by
PSMC is higher than the population size inferred by Popsicle
(Fig. S7). In addition, Popsicle infers a less sharp decline in
population size than PSMC does, for all four populations,
and infers a population size history markedly different for
Yoruba compared to the three other non-African populations
(Fig. 7B and Fig. 7C) whereas the Yoruban population follows
the non-African populations rather closely in the PSMC results
(Fig. S9). Popsicle results suggest a somewhat larger ancestral
population for Yoruba than the ancestral population size of
the 3 non-African populations, which could be interpreted
as deep and long-lasting population structure within Africa
between 400,000 and 100,000 years ago. Note however that the
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non-recombining regions have been chosen using the Decode
recombination map, a genetic map formed by tracking more
than 2,000 meioses in Islandic lineages. Recombination patterns
and hotspots in particular are believed to be variable across
populations (Myers et al. 2005; Baudat et al. 2010), thus the
non-recombining regions selected using the Decode map might
be in fact recombining in Yoruba, resulting in a bias of the
population size estimates (see Fig. 5). Recombination maps for
Yoruba have been computed (Frazer et al. 2007), but because they
have been inferred using properties of linkage disequilibrium
which itself depends on demography, they would not be ideal
to use for selecting regions of low/no recombination. A future
pedigree- or sperm-typing-based recombination map for the
Yoruba would help in understanding the differently inferred
N(t) profiles for African and non-African populations.
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Figure 7 Comparison of N(t) inference among different
methods. A) Comparison of N(t) profiles inferred using
PSMC, MSMC, Popsicle 1 and Popsicle 5; B) Inferred N(t)
profiles for four populations, CEU, CHS, PEL, and YRI based
on Popsicle 1; C) Inferred N(t) profiles for four populations,
CEU, CHS, PEL, and YRI based on Popsicle 5. The time scale
is computed assuming a mutation rate of 1.25× 10−8 and a
generation time of 25 years.

Popsicle 1 and Popsicle 5 give similar effective population
size profiles (Fig. 7B and 7C) but the time of the major features
in Popsicle 5 are shifted to older times compared to Popsicle
1. Whereas Popsicle 1 suggests a bottleneck in non-African
populations that reaches its strongest effect between 30,000
and 40,000 years ago, Popsicle 5 places the bottleneck between
70,000 and 80,000 years ago, which is more in line with the
estimates of timing of the founder effects due to a dispersal
out-of-Africa (Scally and Durbin 2012). In neither Popsicle
nor PSMC do we see the super-exponential increase in size
that has occurred in all populations since the spread of
agriculture (Keinan and Clark 2012), but we possibly do in
the MSMC results (Fig. S8). It is possible that for Popsicle and
PSMC too few loci are included for a reliable inference in the
recent times, too few individuals, or that the mutation rate per
locus is too low to observe a dramatic expansion in population
size (as most terminal branches will be very short in genealogies
from models of rapid recent expansion). Keinan and Clark
(2012) suggest that observing enough rare variants is necessary
to infer the exponential growth that human populations have
been going through in the past thousands of years.

The resolution of Popsicle can be better than that of PSMC,
as Popsicle does not constrain the coalescent times into a finite
(and usually rather small) set of values like PSMC does. In
principle, any time discretization for computing the harmonic
mean of the effective population size over time can be used,
though in practice we need to make sure that there are enough
coalescences within each time interval to get reliable estimates
of the effective size. Popsicle is also markedly faster than PSMC,
not only because it uses a moderate number of non-recombining
regions, but also because of the closed form relationship
between population size and coalescent time distributions.
Most of the computational time is spent on inferring the
gene-genealogies (which takes less than 20 minutes for the
22,321 loci in the data application). Once the gene-genealogies
are computed, the application of the theorem for reconstructing
the population size takes a few seconds. Finally, Popsicle
accommodates samples of any size, which should lead to more
reliable results, especially in the recent times, provided that the
phasing of the genomes is accurate.

Applying Popsicle to extracted regions of limited recombina-
tion should not bias the results in principle. Regardless of the
molecular reason explaining the low rate of recombination in the
region (for instance, limited access for crossovers or conserva-
tion constraints due to functional importance of the region), the
fact that there is one local gene-genealogy for the entire region is
what matters for the method to work. However for applications
to empirical data, variation in the local mutation rate, due to
purifying selection for example, will affect the reconstruction
of the gene-genealogy by changing the estimates of the branch
lengths for different loci. This could potentially cause bias in
the reconstructed Popsicle profiles, as all gene-genealogies are
inferred using one mutation rate. Using a mutation map ob-
tained from the study of de novo mutations in trios or pedigrees
could alleviate this issue and infer the local gene-genealogies
from genetic data using a specific mutation rate for each region.

Discussion

The major implication of our main result is to reduce the problem
of N(t) reconstruction from polymorphism data to a problem
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of gene-genealogy inference. If local gene-genealogies in the
genome can be inferred accurately from observed polymor-
phism data, then our theorem can be used to estimate N(t) with
great accuracy as well. Currently, however, local gene-genealogy
inference remains a challenge. First, most genomes do not
consist in large sets of independent non-recombining loci, but
rather in sets of recombining chromosomes. Each chromosome
can be seen as a linear structure of successive non-recombining
loci whose underlying genealogies are correlated with one
another. This correlation decays with distance between loci due
to recombination. Also, in a given sample, the exact positions on
the chromosome of the recombination events, hence the break
points between the non-recombining bits of DNA, are unknown.
Fully recovering the genealogies along the chromosome
means reconstructing the ancestral recombination graph from
polymorphism data and this is a challenging problem (Griffiths
and Marjoram 1996; McVean and Cardin 2005; Parida et al.
2008; Zheng et al. 2014; Rasmussen et al. 2014). We noted
based on simulations that a low to moderate level of cryptic
(unaccounted) recombination lead to accurate estimates of N(t),
but the bias increase with greater levels of cryptic recombination.

The problem of inferring gene-genealogies can also be chal-
lenged by a lack of mutation events to accurately estimate co-
alescent times. For some species, there might no be enough
mutation events to be able to infer the local gene-genealogies of
non-recombining segments. In humans for example, the ratio
between the mutation rate per site and per generation and the
recombination rate per site and per generation is likely close to 1
(or 2, depending on assumptions on mutation rate; the pedigree
based mutation rate or the divergence based mutation rate, see
e.g. Scally and Durbin (2012)). Hence, on average, for each muta-
tion observed locally in a sample, there is also a recombination
break-point nearby. A targeted approach, where only low recom-
bining regions of sufficient length, are considered could yield
better results and we have shown that such strategy can provide
N(t) profiles that are similar to estimates based on approaches
that specifically model recombination. These challenges are in-
herent to the problem of estimating local gene-genealogies from
sequence data. There has been interesting developments in this
area (see e.g. Rasmussen et al. 2014), and we look forward to
the further methodological improvements to infer the ancestral
recombination graph.

In order to gauge some intuition of usefulness of Popsicle for
human genome data, we can make a computation of the number
of regions that can be recruited for analysis. Assume a genome
of 3 billion bp, a mutation rate of 1.25 ×10−8 per bp and genera-
tion, a recombination rate of 1.25 ×10−8 per bp and generation,
and an effective population size of 10,000 diploid individuals.
Assume further that the genome is organized into recombina-
tion “hot-spot” and “cold-regions”, where the former account
for 99% of the recombination events and the “cold-regions” have
a 100 times lower recombination rate compared to the genome
average. Assuming an average “cold-region” extends for 40 kbp
(compare with fig. S10), the average recombination rate in such a
locus is 5 ×10−6 (orange line in Fig. 5) and the average number
of pairwise mutations would be 20. Hence, the genome would
consist of 75,000 genome regions of length 40kbp that contain
abundant polymorphism data to obtain a good estimate of gene-
genealogies. This rough computation illustrates that at least the
human genome harbor favorable properties that Popsicle can
utilize.

We present a novel method for inferring population size over
time, a problem that has recently gained much interest due to
the availability of genome sequence data. By analytically solving
the relationship between N(t) and the distribution of coalescent
times, we have connected N(t) to the problem of inferring the
ancestral recombination graph from polymorphism data, which
remains a challenge in population genetics. We show that, using
a moderate number of loci and a simple algorithm for genealogy
inference, our method Popsicle was able to recover the general
pattern of population size as a function of time with high resolu-
tion and using modest computational time, properties that will
be useful for future large-scale studies of many full genomes.
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Appendix

Derivation of the Bj
k

The relationship between the density function of the cumulative
coalescent times πk and the family of functions qj can be written
in matrix form. We define −→π (t) the vector of density func-
tions of cumulative coalescent times (π2(t), · · · , πn(t)),

−→q (t)
the vector (q2(t), · · · , qn(t)) and the upper triangular matrix
A = (Aij)26i,j6n = (Ai

j)26i,j6n. Then from equation 3, from
Polanski et al. (2003) we have

−→π (t) = A−→q (t)

To prove that the Bj
k defined in theorem can invert the rela-

tionship between πk(t) and qj(t), we show that the matrix B
defined by (Bij)26i,j6n = (Bi

j)26i,j6n is the inverse matrix of A.
We define C = (Cij)26i,j6n = A× B. Our aim is to prove that C
is in fact the identity matrix. First, we know that C is an upper
triangular matrix, as both A and B are upper triangular matrices.
To prove that C is the identity matrix, we cover 4 separate cases:
Cin for 2 6 i < n, Cij for 2 6 i < j < n, Cii for 2 6 i < n and
finally Cnn. For the computation of the two first cases, we need
to introduce a notation:

Fi,j,n =
n

∏
l=i,l 6=j

1

( l
2)− ( j

2)
(12)
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We know from partial fraction decomposition that

Fi,j,n = (−1)
n

∑
l=i,l 6=j

n

∏
m=i,m 6=l

1

(m
2 )− ( l

2)

= (−1)
n

∑
l=i,l 6=j

Fi,l,n.
(13)

We compute the coefficients Cin, for 2 6 i < n:

Cin =
n

∑
k=2

AikBkn

=
n

∑
k=i

∏n
l=i,l 6=k (

l
2)

∏n
l=i,l 6=k

[
( l

2)− (k
2)
] × (k

2)

(n
2)

=
n−1

∏
l=i

(
l
2

) n

∑
k=i

Fi,k,n

=
n−1

∏
l=i

(
l
2

) n

∑
k=i

(−1)
n

∑
l=i,l 6=k

Fi,l,n

= (−1)
n−1

∏
l=i

(
l
2

) n

∑
l=i

n

∑
k=i,k 6=l

Fi,l,n

= (−1)(n− i)
n−1

∏
l=i

(
l
2

) n

∑
l=i

Fi,l,n

= (−1)(n− i)Cin.

(14)

In the above calculation, we go from line 3 to line 4 by using
equation 12. Then on the next line we exchange the two sums
and by noticing that the terms under the k-indexed sum are
not dependent on k, we obtain line 6. On line 6, we can notice
that the factor after (−1)(n− k) is exactly the same as in line
3, thus is equal to Cin. Since n 6= k, only Cin = 0 can satisfy
Cin = (i− n)Cin.
We go on by computing our second case: the coefficients Cij for
i < j < n:

Cij =
n

∑
k=2

AikBkj

=
j

∑
k=i

AikBkj

=
j

∑
k=i

∏n
l=i,l 6=k (

l
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( l
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2)
]

∏n
l=i,l 6=k

[
( l
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2
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l
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∑
l=i,l 6=k

Fi,l,j

= (−1)
j−1

∏
l=i

(
l
2

) j

∑
l=i

j

∑
k=i,k 6=l

Fi,l,j

= (−1)(j− k)
j−1

∏
l=i

(
l
2

) j

∑
l=i

Fi,l,j

= (−1)(j− k)Cij.
(15)

Similarly to the computation of Cin above, the only way to satisfy
Cij = (i− j)Cij for i < j < n is to have Cij = 0. Now, the remain-
ing coefficients to be computed are the diagonal coefficients. For

2 6 i < n:

Cii = AiiBii

=
∏n

l=i+1 (
l
2)

∏n
l=i+1

[
( l

2)− ( i
2)
] × ( i

2)

( i
2)

n

∏
l=i+1

(
1−

( i
2)

( l
2)

)

= 1.

(16)

Finally,
Cnn = AnnBnn = 1 (17)

All the above computed coefficients prove that the matrix C is
the identity matrix, hence B is the inverse matrix of A, which
achieves to demonstrate theorem .
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Supporting Information

The ms commands for the simulations.
All the times are given in units of 2 times the present haploid population size (see tab:s1 to tab:s4 for the exact values). The letter n
can be replaced by any desired sample size.

• scenario 1: ms n 1 -t 1 -eN 0.025 2 -eN 0.25 0.5 -eN 0.5 1.5 -T
• scenario 2: ms n 1 -t 1 -G 6.93 -eG 0.2 0.0 -eN 0.3 0.5 -T
• scenario 3: ms n 1 -t 1 -G -0.732408192445406 -eG 1.5 0.0 -eN 2 4 -eN 3 3
• scenario 4: ms n 1 -t 1 -G 4605.17018598809 -eG 0.001 -2302.58509299405 -eG 0.002 0 -eN 0.003 0.2 -eN 0.0035 0.05 -eN 0.004 0.1

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

5 10 15 20

1
2

3
4

5
6

7

j

m
ea

n 
ab

so
lu

te
 r

el
at

iv
e 

er
ro

r

Figure S1 Accuracy of estimates of recent N as function of j. We compare estimates of N under scenario 1 with n = 20, between
present and generation 1000 back in the past. Time is discretized in 100 equally sized bins and the accuracy of the N estimation is
measured by the average relative error (see equation 10 in the main text).
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Figure S2 Estimation of N(t) depending on j during the first generations, scenario 1. Different values of j are indicated by the
color of the solid lines, with a rainbow gradient from red (j = 2) to dark blue (j = 20).
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Figure S3 Estimation of N(t) depending on j during during the first generations, scenario 4. Different values of j are indicated by
the color of the solid lines, with a rainbow gradient from red (j = 2) to dark blue (j = 20).
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Figure S4 Uncertainty on the estimates of N(t). Results obtained by first simulating 1,000,000 independent gene-genealogies
from model 1 with 20 haploid gene-copies and then (A) apply the theorem 10,000 times using 10,000 randomly sampled gene-
genealogies from the 1,000,000 genealogies, or (B) apply the theorem 10,000 times using 50,000 randomly sampled gene-genealogies
from the 1,000,000 genealogies. (C) Bootstrap results for model 1 using 20,000 gene-genealogies and 10,000 bootstrap replicates. (D)
Bootstrap results for model 4 using 20,000 gene-genealogies and 10,000 bootstrap replicates. Time is discretized into 100 equally
long intervals. We marked by a two solid gray lines the 2.5 and 97.5 percentiles of the 10,000 estimates of N within each interval.
For (A) and (B), the black solid line represents the true value of N(t). For (C) and (D), the black solid line represents the recon-
structed N(t) profile using our method on the 20,000 independent gene-genealogies.
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Figure S5 Density of V2 with cryptic recombination. Comparison between the expected density of V2 under the constant model
for n = 2 (solid blue line) and the observed density of V2 under the constant model with recombination of Lr = 10−4 in green.
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Figure S6 Effect of estimating trees from polymorphism data. Results of the 2 steps reconstruction method, applied with a sample
size of 20, for 1,000,000 independent loci, evolving under scenario 1 (top figure) and scenario 4 (bottom figure). The mutation rate
per locus Lµ is indicated by the color of the line and the legend gives the correspondence between the colors and the values.
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Figure S7 Comparison of methods on the CEU individuals. Log-scale transformed results of the main text figure 7, panel A.
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Figure S8 Results of MSMC on CEU, CHS, PEL and YRI. Thin light lines represent the population size reconstruction for one
individual and thick lines indicate the average across individuals for a given population. Individuals from PEL have more variance
in the estimated scaled mutation rate by MSMC, thus have time intervals that differ quite a bit from individual to individual when
scaled back in years.
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Figure S9 Results of PSMC on CEU, CHS, PEL and YRI. Thin light lines represent the population size reconstruction for one in-
dividual and thick lines indicate the average across individuals for a given population. Individuals from PEL have more variance
in the estimated scaled mutation rate by PSMC, thus have time intervals that differ quite a bit from individual to individual when
scaled back in years.
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Figure S10 Distribution of length for the no recombining regions of the Decode genetic map.
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Figure S11 Comparison between Popsicle 1 using no recombining Decode regions (green lines) and Popsicle 1 using low recom-
bining regions extracted from HapMapCEU. CEU samples.
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Figure S12 Application of Popsicle 1 to PSMC decoding gene-genealogies. Lower panel is a zoom in of the upper panel curve for
smaller population size.
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Table S1 Scenario 1

Period (in gen.) Haploid Size

0-1,000 20,000

1,000-10,000 40,000

10,000-20,000 10,000

> 20,000 30,000

Table S2 Scenario 2

Period (in gen.) Haploid Size Parameters

0-16,000 N0 exp(−αt) N0 = 40, 000, α = 6.93/(2N0)

16,000-24,000 10,000

> 24,000 20,000

Table S3 Scenario 3

Period (in gen.) Haploid Size Parameters

0-30,000 N0 exp(−αt) N0 = 10, 000, α = −0.732/(2N0)

30,000-40,000 30,000

40,000-60,000 40,000

> 60,000 30,000
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Table S4 Scenario 4

Period (in gen.) Haploid Size Parameters

0-400 N0 exp(−α1t) N0 = 200, 000, α1 = 4605.2/(2N0)

400-800 N1 exp(−α2(t− 400)) N1 = 2, 000, α2 = −2302.6/(2N0)

800-1,200 20,000

1,200-1,400 40,000

1,400-1,600 10,000

> 1,600 20,000
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