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Supplementary Note 1 ï the relation between similarity scores of replicate runs to values of 

SDRUNS and SDINDIVS and to the assigned dynamic threshold  

 

Table S1 presents the mean values of similarity scores between simulated replicate runs 

belonging to the major mode at K=3, for different combinations of values of SDRUNS and 

SDINDIVS. For example, the mean similarity score between simulated runs of the same mode for 

SDRUNS=0.1 and SDINDIVS=0.1 was 0.80. For comparison, for the dataset presented in Figure 4 

(main text), the mean similarity score for runs in the major modes ranged from 0.95 to 0.98, 

depending on the K value (K=2, 3, 4, 5, 6), corresponding to data simulated with both SD values 

less than or equal to 0.025.  

In a second empirical example, we checked the mean similarity scores for combined samples 

from the HGDP-CEPH (Li et al. 2008) and HapMap (Consortium et al. 2010) studies of 

worldwide human samples. This dataset of 2,055 individuals from 64 a priori populations 

consisted of 938 unrelated individuals from the H952 subset (Rosenberg 2006) and 1,117 

unrelated individuals from the HAP1117 subset (Pemberton et al. 2010). Following quality 

control, we obtained a merged set of 2,055 individuals from 64 populations and 486,592 

autosomal SNPs that the two datasets shared in common (Kopelman 2014). For STRUCTURE 

analyses, a smaller computationally feasible set of 5,233 markers was chosen such that adjacent 

markers were separated by at least 500kb (Kopelman 2014). We ran STRUCTURE with the 

admixture model 40 times for each value of K from 2 to 6, with a burn-in period of length 10,000 

iterations followed by 20,000 additional iterations. The mean similarity scores obtained by 

CLUMPP ranged from 0.939 to 0.999, depending on the K value. 

Table S2 presents the mean values of the dynamic threshold assigned by CLUMPAK to simulated 

sets of unimodal runs at K=3, for different combinations of values of SDRUNS and SDINDIVS (see 

Figure 2 for simulation results). For example, the threshold for SDRUNS=0.1 and SDINDIVS=0.1 

was 0.80. Similarly, Table S3 presents the mean values of the dynamic threshold for simulated 

sets of bimodal runs at K=3 and f=0.25 (i.e. 25% of the runs assigned to the minor mode), for 

different combinations of values of SDRUNS and SDINDIVS (see Figure 3 for simulation results). 

Edges whose weights are smaller than the threshold are removed, and the weights of the 

remaining edges are shifted downward by the value of the threshold. CLUMPAK explores a range 

of possible threshold values, searching for the largest threshold for which the fraction of 

singleton clusters is smaller than 0.1 and the mean node degree is at least 50% of the total 

number of vertices.  
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Table S1. Mean CLUMPP similarity scores for the unimodal simulation scenario at K=3, under 

different choices of values of SDRUNS and SDINDIVS. For each choice of SDRUNS and SDINDIVS, 30 

simulations were tested. For each simulation, the mean was calculated across all pairs of runs in that 

simulation ((40×39)/2=780 pairs). The mean values obtained for the same settings were then averaged 

across simulations (30 simulations for each setting). 

 

                 SDINDIVS 

 SDRUNS 

 

0.01 0.025 0.05 0.075 0.1 0.15 

0.01 0.98 0.96 0.93 0.89 0.85 0.78 

0.025 0.96 0.95 0.92 0.88 0.85 0.78 

0.05 0.93 0.92 0.90 0.87 0.84 0.77 

0.075 0.90 0.89 0.87 0.85 0.82 0.76 

0.1 0.86 0.86 0.84 0.82 0.80 0.74 

0.15 0.79 0.79 0.78 0.76 0.75 0.70 
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Table S2. Mean value of the dynamic threshold for the unimodal simulation scenario at K=3, under 

different choices of values of SDRUNS and SDINDIVS. For each choice of SDRUNS and SDINDIVS, 30 

simulations were tested. The values obtained for the same settings were averaged across simulations (30 

simulations for each setting). 

 

                 SDINDIVS 

 SDRUNS 

 

0.01 0.025 0.05 0.075 0.1 0.15 

0.01 0.98 0.96 0.92 0.88 0.85 0.78 

0.025 0.96 0.95 0.91 0.88 0.84 0.77 

0.05 0.93 0.92 0.90 0.87 0.83 0.76 

0.075 0.89 0.89 0.87 0.85 0.82 0.75 

0.1 0.86 0.86 0.84 0.82 0.80 0.74 

0.15 0.79 0.79 0.78 0.76 0.75 0.70 
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Table S3. Mean value of the dynamic threshold for the bimodal simulation scenario at K=3, under 

different choices of values of SDRUNS and SDINDIVS. Simulations were carried out with f=0.25 of the runs 

assigned to the minor mode. For each choice of SDRUNS and SDINDIVS, 30 simulations were tested. The 

values obtained for the same settings were averaged across simulations (30 simulations for each setting). 

 

                 SDINDIVS 

 SDRUNS 

 

0.01 0.025 0.05 0.075 0.1 0.15 

0.01 0.97 0.95 0.92 0.88 0.84 0.76 

0.025 0.95 0.94 0.91 0.87 0.83 0.76 

0.05 0.90 0.90 0.88 0.85 0.82 0.75 

0.075 0.86 0.85 0.84 0.82 0.79 0.73 

0.1 0.82 0.81 0.80 0.79 0.76 0.71 

0.15 0.75 0.75 0.74 0.73 0.72 0.67 
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Figure S1. Jaccard similarity scores between the clustering solution obtained by CLUMPAK 

and the ñtrueò (simulated) partitioning in a bimodal case, as a function of of SDRUNS, 

SDINDIVS, and either a fixed threshold value or a dynamic threshold. Simulations were carried 

out with f=0.125 of the runs assigned to the minor mode. (A) SDINDIVS=0.01. (B) SDINDIVS=0.05. 

(C) SDINDIVS=0.075. (D) SDINDIVS=0.15. 
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Figure S2. Jaccard similarity scores between the clustering solution obtained by CLUMPAK 

and the ñtrueò (simulated) partitioning in a bimodal case, as a function of SDRUNS, SDINDIVS, 

and either a fixed threshold value or a dynamic threshold. Simulations were carried out with a 

fraction f=0.375 of the runs assigned to the minor mode. (A) SDINDIVS=0.01. (B) SDINDIVS=0.05. 

(C) SDINDIVS=0.075. (D) SDINDIVS=0.15. 
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Figure S3. Jaccard similarity scores between the clustering solution obtained by CLUMPAK 

and the ñtrueò (simulated) partitioning in a bimodal case, as a function of SDRUNS, SDINDIVS, 

and the value of the MCL parameter r. Simulations were carried out with a fraction f=0.25 of 

the runs assigned to the minor mode, and the default procedure of dynamically detecting an 

optimal similarity threshold. (A) SDINDIVS=0.01. (B) SDINDIVS=0.05. (C) SDINDIVS=0.075. (D) 

SDINDIVS=0.15. 
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Appendix 1: Seed vectors used in the simulations 

 

Six 3-component ñseedò vectors, for the major and minor modes of three populations, were taken 

from the same dataset used to make Figure 4 (main text). We used the ancestry coefficients of 

the major and minor modes of the Mozabite, Bedouin, and Druze populations at K=3 (see Figure 

4). These populations were chosen because bimodality was evident at K=3. The three seed 

vectors used in the simulations, representing the major mode are (0.459, 0.036, 0.506), (0.547, 

0.385, 0.068), and (0.743, 0.236, 0.021), corresponding to the Mozabite, Bedouin, and Druze 

populations, respectively. The three simulated seed vectors that correspond the minor mode are: 

(0.459, 0.535, 0.006), (0.585, 0.398, 0.017), and (0.660, 0.071, 0.269). Thus, for example, if the 

fraction of runs to be assigned to the minor mode was f=0.25, then for population 1 (Mozabite), 

in each simulation of 40 runs, 30 were generated based on the seed vector representing the major 

mode (0.459, 0.036, 0.506), and 10 runs were generated based on the seed vector representing 

the minor mode (0.459, 0.535, 0.006). In the unimodal simulations conducted using f=0.0, 

representing a single mode, all runs were sampled from the major mode.  

In addition to this set of seed vectors, two other sets of seed vectors were tested, and the results 

were very similar to those presented in Figures 2 and 3 (results not shown). 



10 
 

Appendix 2: The procedure for setting the parameters of a Dirichlet distribution to obtain 

predetermined expectations and variances 

 

Let P= ὴȟὴȟὴ  be the target 3-element membership vector, such that π ὴ ρ, and 

ὴ ὴ  ὴ ρ. We use the Dirichlet distribution to sample around P, varying the level of 

variance around the target vector using a concentration parameter Ŭ. Let X={xi} ~ ὈὭὶ‌Ͻὴȟ‌Ͻ
 ὴȟ‌Ͻ ὴ . Following the properties of a Dirichlet distribution, E(xi)=pi  for i=1, 2, 3. Thus, the 

expected values are determined by the target vector P and not by Ŭ. However, by increasing Ŭ, 

the sample variance decreases, so that the samples are more centered around the expected values.  

Specifically, given a desired variance v (and standard deviation SD), we wish to find ‌ such 

that ὺ ὠὥὶὼ , i=1,2,3. This strategy, however, leads to an overdetermined system 

of equations because we have three constraints (one for each i) for the single Ŭ parameter. We 

therefore set the value of Ŭ according to the desired variance of the first component, so that 

‌
Ͻ  

. We note that although Ŭ is adjusted only according to the first component, it 

acts as a concentration parameter for all three components, as higher Ŭ values decrease the 

variance of all components.   
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