Supplementary Material of "Resequencing data provide no evidence for a human bottleneck in Africa during the penultimate glacial period"

- Supplementary table 1: Summary statistics for each marker in the San sample.
- Supplementary table 2: Summary statistics for each marker in the Biaka sample.
- Supplementary table 3: Summary statistics for each marker in the Mandenka sample.
- Supplementary table 4: Posterior probabilities of the different models estimated with the rejection algorithm.
- Supplementary table 5: Posterior P-values of the summary statistics.
- Supplementary table 6: Posterior estimates of the demographic parameters.
- Supplementary figure 1: Posterior distributions of the intensity b of the bottleneck.
- Supplementary figure 2: Mean of the summary statistics as a function of the bottleneck intensity *b*.
- Supplementary figure 3: Variance of the summary statistics as a function of the bottleneck intensity b.
- Supplementary figure 4: Posterior distribution of the ancestral effective population size N_A .
- Supplementary figure 5: Values of the population-wise summary statistics as a function of the Biaka and San divergence times.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15411501 10 0000 55 -0.120 -0.55 4
13 oMB69 10 6069 16 0.5 0.521 1.4
14 gMB 85 12 6194 29 -0.721 0.319 -2.7
15qMB35 16 5966 18 0.307 0.465 1.9
16pMB17 18 6781 21 -0.981 0.031 -6.8
16qMB53 18 6168 31 -0.607 -0.855 -5.0
17qMB66 18 5870 15 0.948 0.922 0.5
18pMB7 18 4627 24 -0.213 -0.006 3.7
18qMB34 18 0175 38 0.288 0.307 -1.3 18qMB47 16 5056 20 0.024 0.006 2.5
18 qMB47 10 5550 20 -0.024 0.500 2.5 18 qMB60 16 6195 16 -0.754 -0.423 2.4
18 gMB67 16 6482 19 -0.694 -1.647 -0.1
18qMB73 12 5163 32 -0.77 -1.167 1.2
$19\hat{q}MB35$ 16 5789 26 -0.245 -1.24 0.
1pMB101 18 6362 37 1.583 0.506 0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
IPMB81 18 6042 33 -1.191 -2.113 -2.3
$20 \mu MB7$ 16 0797 24 1.300 1.327 2.0 $21 \mu MB20$ 18 5875 22 -0.75 -1.32 -0.0
21qMB20 10 0010 22 -0.10 -1.52 -0.3 21gMB23 18 6005 26 0.463 0.887 4.0
2pMB3 16 5610 16 -0.822 -1.141 -0.3
2pMB6 18 5972 31 1.29 0.86 3.6
2qMB114 18 5919 21 -0.365 -0.564 1.5
2qMB134 16 5959 29 0.678 0.38 2.3
2qMB143 16 5470 21 -0.13 0.67 4.3 2mMD221 18 6268 20 0.528 1.284 4.2
$2q_{MB221}$ 16 0208 50 -0.528 -1.584 4.2 $3q_{MB148}$ 14 6076 24 -0.911 -1.59 1.8
4pMB27 14 5996 21 -0.453 0.443 2.2
4pMB31 18 6019 14 -0.391 -0.383 -0.9
4qMB105 18 5887 24 -0.187 0.527 4.2
4qMB157 18 8007 45 0.111 0.784 -3.2
4qMB179 18 5912 25 -1.146 -1.734 -1.0
4qMB181 12 4637 18 0.328 0.889 -0.4
5pMB10 10 0455 17 0.079 0.384 -1. 5pMB31 14 6152 22 1.134 1.88 0.5
5pMB35 14 0152 22 -1.154 -1.86 $0.55pMB35$ 14 6080 26 -0.074 0.27 1.1
5pMB4 18 4944 9 -0.702 1.499 -0.3
5qMB113 18 6083 24 0.669 1.327 -5.3
5qMB123 18 6035 20 0.186 0.253 -1.4
5qMB128 18 6787 15 -0.916 -0.64 -0.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0 0 0 0 0.907 1.331 $-1.36a$ MB164 18 5100 15 -0.547 0.940 1.4
$7_{\rm p}{\rm MB42}$ 16 5100 15 -0.547 -0.249 1.4 7 $_{\rm p}{\rm MB42}$ 16 6067 16 -0.004 -0.064 -1.5
$7_{\rm pMB8}$ 16 7142 38 -0.564 -0.094 -1.3
7qMB152 16 6008 27 -1.757 -1.595 -0.9
7qMB83 18 6482 18 -0.375 0.416 2.2
8pMB5 16 4759 36 -0.054 0.515 1.2
$90MB\delta$ 14 5919 $30 -0.047$ 0.291 4.9 9aMB100 16 6161 $24 -0.07$ 0.06 2.9

Table 1: Summary statistics for each marker in the San sample.

	sample size	seq. length (bp)	S	D	D^*	Н
10gMB110	26	5593	17	0.580	0.603	1 082
10qMB119 10qMB127	20 30	5285	19	0.651	-0.003	2.152
10qMB121 10qMB128	28	4680	23	-0.364	-0.343	2.101
10gMB85	$\frac{1}{26}$	6049	15	-0.097	-0.459	-0.197
11 pMB20	$1\tilde{6}$	5867	$\overline{25}$	-0.874	-0.364	2.917
11pMB23	28	6168	41	-0.241	1.469	-0.582
12qMB46	28	6567	26	-0.25	-0.661	1.106
13qMB 107	18	4484	20	0.804	0.563	-0.915
13qMB108	28	5282	25	-1.518	-1.642	-2.783
13qMB31	28	5843	31	-0.779	-0.749	-0.635
13qMB04 13aMB67	20	0704 6058	21	-0.645	0.368	-1.44 2.317
13qMB69	20 16	6069	10	-0.201	-0.233	2.517
14gMB85	24	6194	36	-0.338	-0.696	3 572
15 qMB 35	30	5966	28	-0.131	-0.256	4.239
16pMB17	24	6781	34	-0.514	0.023	-3.297
16qMB53	28	6168	26	1.181	0.765	1.725
17 q MB66	30	5870	28	0.192	1.389	-4.074
18 pMB7	28	4627	17	0.272	0.147	1.794
18qMB34	30	6175	37	-0.541	-0.579	-10.906
18qMB47	24	5956	19	-0.533	-0.67	1.725
18qMB60 18aMB67	20	6489	27	-0.971	-0.791	-0.382
$18 \alpha MB73$	16	5163	34	-0.400	-0.177	-1.515
19gMB35	16	5789	12	-0.334	-0.173	-0.333
1pMB101	26	6362	47	-0.152	0.729	-9.231
1pMB4	$\bar{28}$	4274	$\overline{27}$	-0.314	0.26	-1.249
1° MB81	30	6042	50	0.046	-0.4	6.52
20pMB7	28	6797	26	0.181	-1.232	3.217
21qMB20	28	5875	27	-0.453	-0.294	1.55
21qMB23	30	6005	31	-0.322	0.208	4.809
2pMB3	28	5610	27	-0.937	-0.847	-0.222
2pMB0 2aMB114	24	5010	39 24	-0.33	0.475	-0.387
2qMB134	28	5959	36	-0.009	0.49	0.381
2qMB101 2qMB143	28	5470	27	-0.135	0.26	3.952
2qMB221	$\overline{24}$	6268	$\overline{25}$	-0.104	-0.649	1.536
3qMB148	26	6076	23	-0.072	0.008	2.535
4 pMB 27	28	5996	30	-0.643	0.434	0.857
4 pMB31	30	6019	29	-1.428	-1.247	-1.848
4qMB105	28	5887	20	-0.252	0.049	1.693
4qMB157 4=MD170	26	8007	62	-0.534	-1.419	-1.526
4qMB179 4aMB181	20	0912 4637	20 30	-0.435	-0.147	3.021 2.4
5pMB10	20	6455	35	0.131	-0.18	-1 415
5pMB31	26	6152	18	-0.051	-0.48	0.418
5pMB35	$\frac{1}{28}$	6080	$\frac{10}{28}$	-0.594	-0.216	-1.735
5pMB4	28	4944	12	-1.596	-1.5	0.085
$5\hat{q}MB113$	30	6083	34	-0.642	0.37	-11.651
5qMB123	28	6035	26	-1.207	-2.944	-0.058
5qMB128	28	6787	33	-0.699	-0.356	-8.556
6pMB14	24	7163	44	0.197	1.529	-0.449
0PMB45 6aMP164	8	5921	28	1.392	1.231	-0.143
7pMP49	∠o 20	0100 6067	14	-1.8	-0.860	0.979
7 pMB42 7 pMB8	20	7142	39	-1.0	-0.809	-0.010
7gMB152	24	6008	20	0.513	0.457	2.826
7qMB83	28	6482	$\tilde{22}$	-0.147	0.539	3.212
8pMB5	26	4759	41	-0.697	-1	0.012
$9\rm{p}MB8$	28	5919	51	-0.732	-1.595	6.466
9qMB100	28	6161	30	-0.777	-0.835	1.995

Table 2: Summary statistics for each marker in the Biaka sample.

	sample size	seq. length (bp)	S	D	D^*	Н
10gMB119	26	5523	15	0.341	-0.459	1.674
10qMB127	32	5285	20	-0.313	-0.012	0.577
$10\hat{q}MB128$	28	4680	22	-0.521	-1.417	3.36
10qMB85	32	6049	15	0.032	-0.576	0.23
11pMB20	20	5867	25	-1.009	-0.786	1.579
11 pMB23	24	6168	43	-0.217	-0.797	1.471
12qMB46	28	6567	19	0.486	0.688	1.561
13qMB 107	20	4484	12	1.208	0.657	-3.484
13qMB108	26	5282	18	-0.525	0.268	-1.083
13qMB31	30	5843	25	-0.678	-1.709	-0.543
13qMB64 12=MD67	30	5764	10	-0.912	0.016	-1.333
12gMD60	20	6060	ວ∠ ວ2	-0.25	-1.05	2.01
14gMD05	20	6104	20	-0.24	1 467	-0.308
15qMB35	32	5966	24	-0.309	-0.013	1.27
16pMB17	26	6781	34	-0.588	-0.913	-6.338
16gMB53	32	6168	26	-0.557	-0.754	-4.931
17gMB66	32	5870	33	-0.365	-0.441	-4.5
18pMB7	28	4627	$\tilde{27}$	-0.447	-1.124	2.54
18qMB34	28	6175	35	0.235	0.222	-5.905
18qMB47	26	5956	15	0.268	0.4	1.748
18qMB60	30	6195	18	0.158	-0.177	2.952
18 q MB67	28	6482	24	0.314	0.659	3.265
18qMB73	18	5163	39	-0.155	0.41	0.288
19 q MB35	28	5789	23	-1.059	-0.658	-5.974
1pMB101	22	6362	49	-0.235	0.682	-9.576
IpMB4	24	4274	36	-0.825	-0.075	0.413
1pMB81	30	6042	58	-0.467	-1.527	7.154
20 pMB7 21 cMB20	20	5875	24	0.289	-0.233	4.217
21qMB20 21aMB23	30	6005	26	-0.425	-1.051	2 907
2nMB3	28	5610	32	-0.751	-0.668	0.122
2pMB6	26	5972	30	0.017	0.958	0.197
2aMB114	32	5919	$\tilde{22}$	-0.443	-0.52	3.081
2qMB134	32	5959	38	-0.101	-0.557	-1.911
2qMB143	32	5470	19	-0.714	1.029	-2.597
$2\bar{q}MB221$	32	6268	27	0.143	1.066	0.532
3qMB148	32	6076	24	-0.235	-0.329	2.863
4 pMB27	28	5996	20	0.053	-0.654	1.545
4pMB31	32	6019	19	-0.907	-0.864	1.129
4qMB105	28	5887	20	0.259	1.454	3.402
4qMB157 $4\pi MD170$	30	8007	43	-1.070	-0.602	-14.4
4qMD179	32 24	0912 4637	29	-0.802	0.055	1.097
5pMB10	24	6455	24	0 708	0.400	-3 631
5pMB31	28	6152	25	-0.859	-1 936	0.455
5pMB35	28	6080	32	-0.437	-0.908	2.122
5pMB4	26	4944	9	-0.824	-1.017	0.628
5qMB113	$\overline{32}$	6083	32	0.585	0.989	-3.581
5qMB123	32	6035	25	-0.374	0.676	2.968
$5\hat{q}MB128$	28	6787	37	-0.727	0.534	-8.116
6pMB14	20	7163	44	0.431	0.719	0.947
6 pMB45	6	5921	29	-1.213	-0.538	-9.067
6qMB164	28	5100	16	-0.585	-1.204	1.344
7pMB42	28	6067	17	0.27	-1.048	-1.693
7pMB8	28	7142	37	-0.816	0.108	-10.349
7qMB152	30	6008	36	-0.852	-0.203	-0.883
(qMB83	28	0482	26	-0.641	-0.947	2.995
opmbo 0pMB8	24 20	4709	30 40	0.127	0.20	-1.304
9gMB100	32 28	6161	29	0.321 0.197	-0.143	3.783
0010100	<u> </u>	0101		0.101	0.140	0.100

Table 3: Summary statistics for each marker in the Mandenka sample.

Table 4: Posterior probabilities of the different models estimated using the proportion of accepted simulations for each model (rejection algorithm).

	High mutation rate San Biaka Mandenka San 0.55 0.54 0.48 0.64 0.14 0.16 0.20 0.13 n 0.31 0.30 0.32 0.22			Low mutation rate		
	San	Biaka	Mandenka	San	Biaka	Mandenka
Null	0.55	0.54	0.48	0.64	0.65	0.56
Bottleneck: founder	0.14	0.16	0.20	0.13	0.15	0.20
Bottleneck: fragmentation	0.31	0.30	0.32	0.22	0.20	0.24

Table 5: Posterior two-sided P-values of the summary statistics. S is the number of SNPs, D s the Tajima's D, D^* is the Fu and Li's D^* , H is the Fay and Wu's H, C is Hudson's C, and "Var" denotes the variance. In the posterior check simulations, the P-values are calculated as the probability of obtaining a summary statistic more extreme (on both sides) than the observed value.

			San						
	\overline{S}	\overline{D}	$\overline{D^*}$	\overline{H}	VarS	VarD	$VarD^*$	VarH	\overline{C}
Null, high mut. rate Founder high mut. rate	0.822	0.327	0.619	0.299	$0.014 \\ 0.012$	$0.701 \\ 0.264$	0.097 0.033	0.484	$0.681 \\ 0.802$
Fragmentation, high mut, rate	0.382	$0.100 \\ 0.509$	0.500	0.103 0.241	0.012 0.122	0.201 0.996	0.198	0.788	0.465
Null, low mut. rate	0.167	0.276	0.678	0.232	0.001	0.826	0.113	0.181	0.901
Founder, low mut. rate	0.541	0.225	0.974	0.150	0.001	0.717	0.484	0.191	0.957
Fragmentation, low mut. rate	0.490	0.170	0.990	0.201	0.001	0.990	0.216	0.190	0.971
			Biaka	a					
	\overline{S}	\overline{D}	$\overline{D^*}$	\overline{H}	VarS	VarD	$VarD^*$	VarH	\overline{C}
	0.000	0.155	0.000	0 = 00	0.000	0.050	0.000	0.050	0.055
Null, high mut. rate	0.693	0.175	0.862	0.763	0.675	0.252	0.996	0.250	0.975
Founder, nign mut. rate	0.803 0.716	0.044	0.642	0.994	0.454	0.339	0.766	0.300	0.849
Null low mut rate	0.710 0.701	0.007	0.749 0.524	0.940 0.063	0.000	0.098	0.902 0.021	0.339	0.784
Founder low mut rate	0.791 0.738	0.020	0.524 0.730	0.903	0.333 0.270	0.100	0.921 0.973	0.400 0.441	0.034 0.706
Fragmentation, low mut, rate	0.667	0.031 0.046	0.626	0.900	0.215 0.297	0.205 0.306	0.914	0.441 0.442	0.700 0.744
	0.001	010 10	0.020	0.000	0.201	0.000	0.011	0.112	0.1.11
			Mander	nka					
	\overline{S}	\overline{D}	$\overline{D^*}$	\overline{H}	VarS	VarD	$VarD^*$	VarH	\overline{C}
Null high mut note	0 672	0.996	0.008	0.914	0.914	0.025	0.001	0.072	0.020
Foundar high mut rate	0.073	0.220	0.908	0.314 0.500	0.214 0.110	0.020	0.991	0.073	0.929
Fragmentation high mut rate	0.502	0.220	0.515 0.585	0.333 0.344	$0.110 \\ 0.152$	0.039	0.545	0.082 0.184	0.302 0.978
Null low mut rate	$0.000 \\ 0.423$	0.455 0.175	0.978	0.337	0.102 0.118	0.000	0.866	0.104 0.092	0.932
Founder, low mut, rate	0.955	0.044	0.452	0.443	0.220	0.021	0.957	0.052	0.914
Fragmentation, low mut. rate	0.601	0.141	0.846	0.339	0.382	0.014	0.865	0.065	0.712

		_				
		$N_0/1$	$10^3 N_A/10^3$	$T_{g}/10^{3}$	_	
	San (low)	230 (71	,913) 33 (31,35	5) 42 (2,92)		
	Biaka (low) Mandonka (lo	81 (19, 123 (47))	(730) 32 (29,35 (757) 32 (28,35) (28,35)	5) 29 (5,90)		
	San (high)	23 (14)	(101) (100) $(100$) 46 (9,92)		
	Biaka (high)	20 (11,	(127) 12 $(9,13)$) 55 (9,98)		
	Mandenka (h	(gh) = 22 (11)	,214) 12 (10,15	b) $31(6,92)$	_	
		Found	ler model			
	$N_0/10^3$	$T_{dur}/10$	$)^3 - b$	$N_{A}/10$	$T_{g}/1$	0 ³
San (low)	159(48,5)	54) 43 $(40,4)$	$6) 0.11 \ (0.01, 0.01)$	41) 33 (32,3	34) 25 (2,	88)
Biaka (low) Mandanka (lo	108 (31,7)	13) 31 (21,5) (22,5) (20,5)	$\begin{array}{cccc} 3) & 0.13 & (0.00,0. \\ 0 & 0.10 & (0.00,0. \end{array}$	(44) 32 (30,3	35) 36 (5, 21) (2)	96) 02)
San (high)	51 (24,32)	1) 28 (21,5)	2) 0.09 (0.00,0.0)	(33) $(29, 31)$	8) 15 (4, -1)	55)
Biaka (high)	15 (10,9)	1) 33 (20,5	6) 0.06 (0.00, 0.	54) 13 (10,1	$15) 63 \ (3,1)$.0Ó)
Mandenka (h	igh) $23 (11,19)$	(5) 43 (21,5)	$9) 0.11 \ (0.00, 0.$.97) 13 (11,1	16) 46 (3,	99)
		Fragment	ation model			
	$N_0/10^3$	$T_{dur}/10^3$	-b	$N_{A}/10^{3}$	$T_{g}/10^{3}$	n
San (low)	206 (18,1022)	38(22,56)	0.14(0.01, 0.57)	33 (30,34)	46 (2,93)	5(2,9)
Biaka (low)	107 (20,793)	39(24,54)	0.08(0.01, 0.21)	32(30,34)	32(2,100)	6(2,10)
Mandenka (low)	99(32,674)	32(20,59)	0.06 (0.00, 0.47)	28 (25,33)	38 (8,96)	5(2,9)
San (mgn) Bisks (bigh)	23(11,231) 18(0.250)	30(21,39) 37(21.58)	0.08 (0.00, 0.80) 0.23 (0.00 1.21)	10(7,14) 12(0.15)	47(3,97)	(2,9) 8 (3.10)
Mandenka (high)	25(20.44)	39(20.59)	0.23(0.00,1.31) 0.12(0.02,0.84)	12(9,15) 12(9,15)	38(10.93)	7(2.10)
	- (- ,)	(- / /	())	(-, -)	(- ,- •)	()-)

Table 6: Posterior estimates of the demographic parameters.

Figure 1: Posterior distributions of the intensity b of the bottleneck for the two bottleneck models and the two mutation rates. The population size N_B during the bottleneck is given by $N_B = N_A \times 10^b$ where N_A is the population size before the bottleneck. There is a 30 fold reduction of population size when b = -1.5, a 3 fold reduction of population size when b = -0.5 and no reduction in size when b = 0.

Figure 2: Expected values of the mean (over the 61 loci) Tajima D, Fu and Li D^* , and Fay and Wu's H as functions of the bottleneck intensity. The colored lines represent the expected values and the colored envelopes show the approximate 95% C.I. estimated from non-linear regression. Specifically, the C.I. range from $m(b) - 2\sigma_{-}(b)$ to $m(b) + 2\sigma_{+}(b)$ where $\sigma_{-}(b)$ and $\sigma_{+}(b)$ are nonlinear estimates of the standard deviation of the negative and positive residuals. The plain, dashed and dotted black horizontal lines correspond to the summary statistics computed for the San, Biaka, and Mandenka samples.

Figure 3: Expected values of the variance (over the 61 loci) of Tajima D, Fu and Li D^* , and Fay and Wu's H as functions of the bottleneck intensity. The colored lines represent the expected values and the colored envelopes show the approximate 95% C.I. estimated from non-linear regression. Specifically, the C.I. range from $m(b) - 2\sigma_{-}(b)$ to $m(b) + 2\sigma_{+}(b)$ where $\sigma_{-}(b)$ and $\sigma_{+}(b)$ are nonlinear estimates of the standard deviation of the negative and positive residuals. The plain, dashed and dotted black horizontal lines correspond to the summary statistics computed for the San, Biaka, and Mandenka samples.

Figure 4: Posterior distribution of the ancestral effective population size N_A .

Figure 5: Values of the population-wise summary statistics as a function of the Biaka and San divergence times. The cross corresponds to the point estimate provided by Veeramah et al. (2011) and the dashed lines correspond to their 95% credibility intervals. The simulations of the divergence model were performed assuming a constant effective population size of N = 14000 individuals and a mutation rate of $\mu = 2.5 \times 10^{-8}$ /bp/generation.